

GENERATION OF TRIANGULAR FINITE ELEMENT GRIDS USING OPENMeshS

André Fortunato (afortunato@lnec.pt)

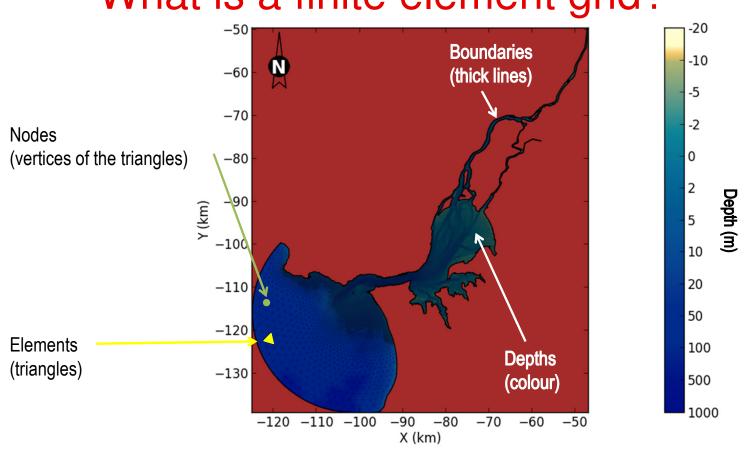
Content

- Part 1. Concepts and theory
 - What is a finite element grid?
 - The major steps in grid generation
- Part 2. Application
 - The major steps in grid generation using OPENMeshS
 - Application to the Sea of Azov
 - Accessing OPENMeshS
- Part 3. Hands on: generating a grid for the Sines harbor •

GENERATION OF TRIANGULAR FINITE ELEMENT GRIDS USING OPENMeshS PART 1: CONCEPTS AND THEORY

What is a finite element grid?

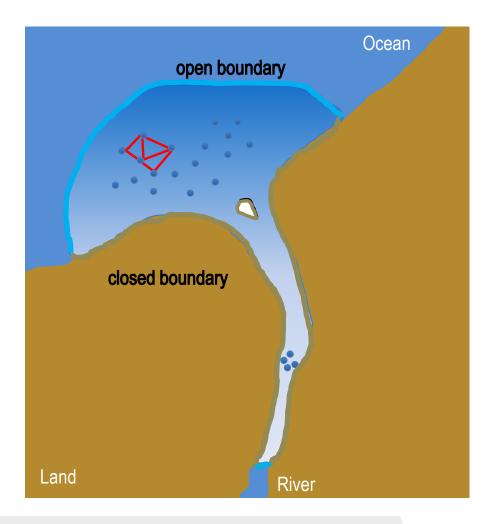
- Coastal processes are described by partial differential equations ٠
- Because there are no analytical solutions for those equations, they have to be discretized to be solved numerically
- A FE grid is an approach to discretize a continuous domain ٠
- FE discretizations offer a piece-wise continuous description of the variables, with a varying ٠ resolution
- Nodes and elements of the grid determine where equations are solved and how spatial ٠ gradients are evaluated


What is a finite element grid?

- A finite element grid includes the following information: •
 - Location of the nodes
 - Depths at the nodes
 - Definition of the elements (ordered list of nodes that define each element)
 - Definition of the boundaries

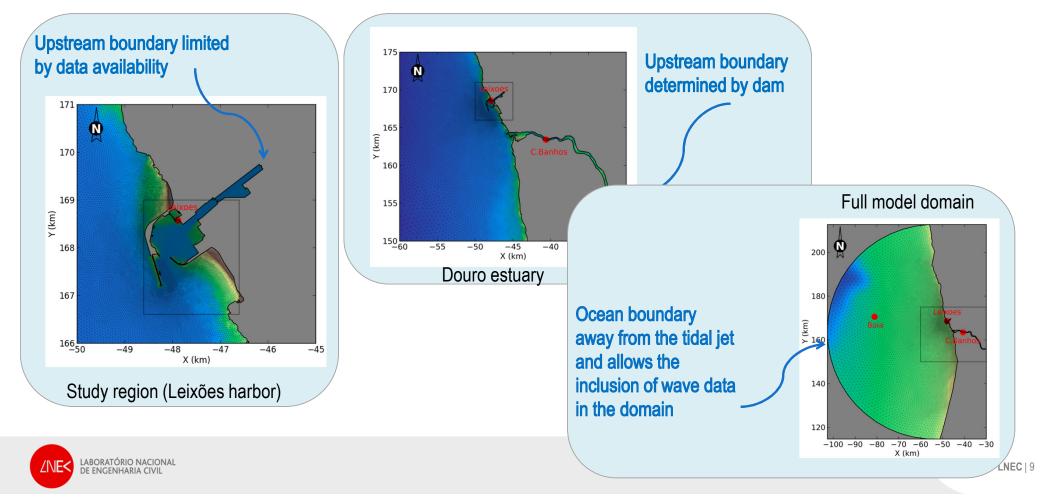
Table of nodes

Table of elements



Major steps

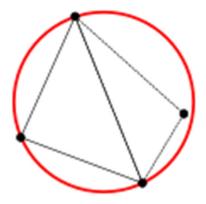
- **Domain definition** 1
- Node placement 2.
- 3. Definition of the triangles
- Optimization and verification 4.
- Interpolate the bathymetry 5.
- Boundary definition 6.



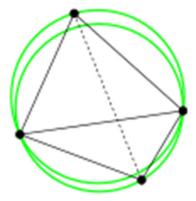
1. Domain definition

- Upstream:
 - Should extend beyond tidal intrusion
 - Often limited by the availability of bathymetry data
- Downstream: •
 - Extend to deep waters, where velocities are small
 - Do not place the boundary in areas with strong velocities
 - Do not place the boundary in areas affected by the tidal jet
 - Make the boundary geometrically simple

1. Domain definition: example


2. Node placement

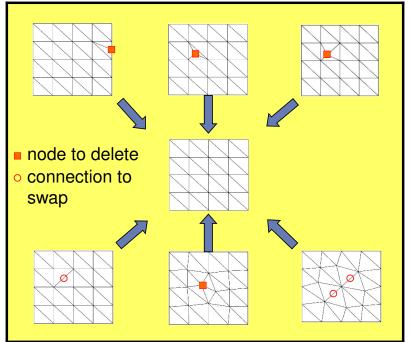
- Choose node density to resolve
 - Tidal wave: minimum dimensionless wavelength should be at least 40-60
 - Tidal channels must be resolved with over 4-6 nodes to guarantee the reproduction of the fluxes
 - Sharp bathymetric gradients (e.g., shelf slope)
 - Solid boundaries must be adequately resolved
 - Sharp velocity gradients (e.g., ebb jet from a tidal inlet)
- Grid resolution should vary smoothly to promote:
 - Accuracy (minimize truncation errors)
 - Stability (depending on the models)



3. Triangulation of a set of points

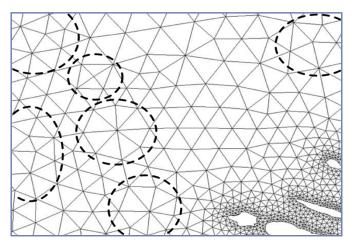
• Delaunay triangles: no node is inside the circumcircle of any triangle

Triangles that do <u>not</u> meet the Delaunay criterion


Triangles that meet the Delaunay criterion

Figures from wikipedia

4. Optimization and verification


- Goals:
 - Reduce skewness
 - Minimize maximum number of neighbours
 - Smooth transition between element sizes
 - Prevent angles above 90° (some models)
- Typical operations:
 - Add nodes
 - Delete nodes
 - Move nodes
 - Swap edges

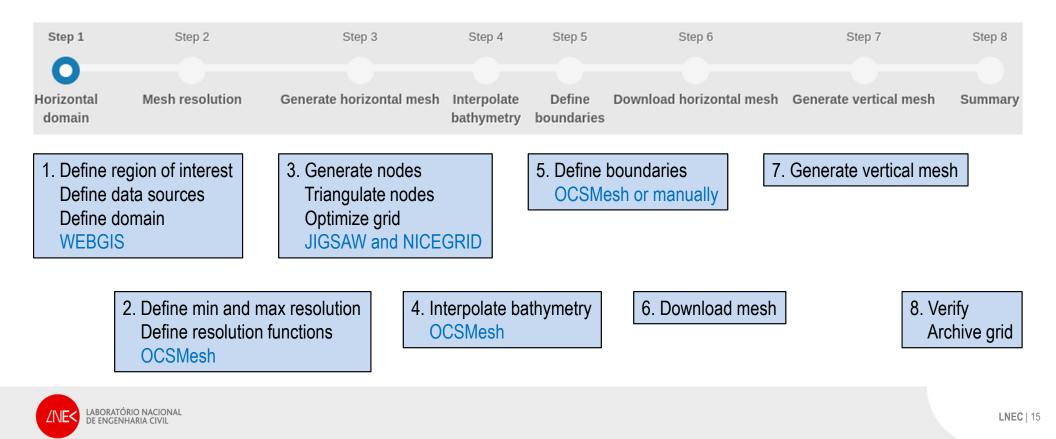
Grids that are transformed into the one in the center

4. Optimization and verification

Before

(generated with *xmgredit*)...

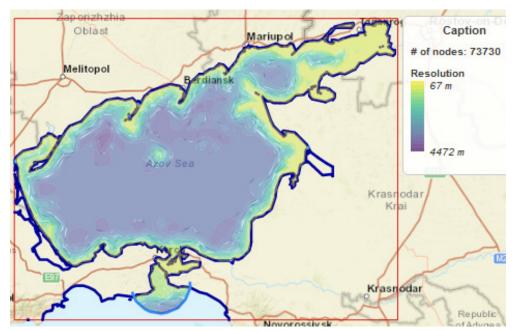
1 54/-X


... and after (optimized with *nicegrid*)

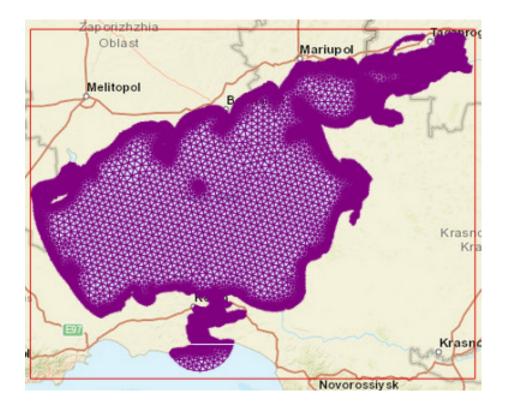
GENERATION OF TRIANGULAR FINITE ELEMENT GRIDS USING OPENMeshS PART 2: APPLICATION

The major steps in grid generation using OPENMeshS

Step 1. Horizontal domain


- 1. Provide a name for the mesh
- 2. Define region of interest by drawing a rectangle on a map
- 3. Select sources of bathymetry or topography, in increasing order of interpolation
- **4**. Define the domain:
 - 1. Land boundaries: using available coastlines (Open Street Maps, EMODNET)
 - 2. Open boundaries: drawing (and editing) circles and linear segments

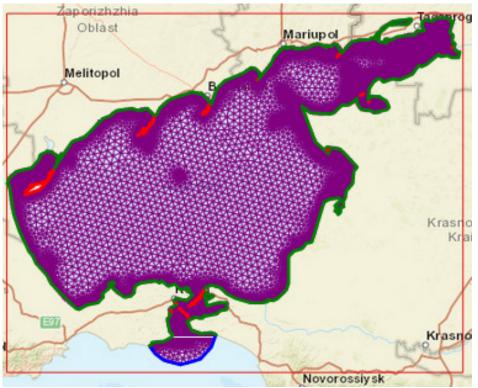
Step 2. Mesh resolution


- Define minimum and maximum 1 resolution (mandatory)
- Define constant resolution between 2. two isobaths
- Define linear resolution growth away 3. from an isobath
- 4. Define constant resolution inside a polygon

Step 3. Generate horizontal mesh

- 1. Generate mesh (mandatory)
- 2. Improve mesh with nicegrid
- 3. Check nicegrid report and accept changes

Step 4. Interpolate bathymetry


1. Interpolate bathymetry

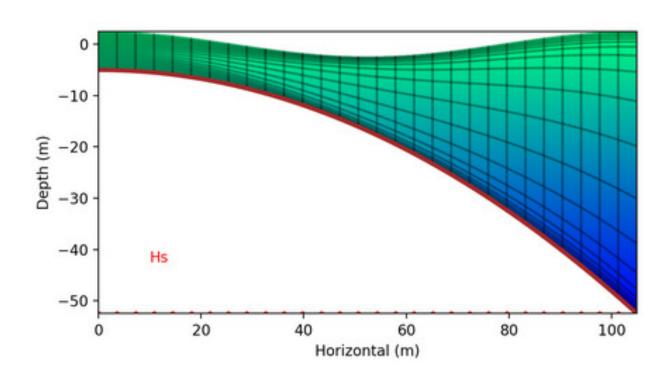
Step 5. Define boundaries

- 1. Click on consecutive (counterclockwise) open boundary nodes. Closed boundaries are defined automatically
- 2. Possibility to impose a minimum depth at nodes from open boundary elements

Step 6. Download horizontal mesh

- 1. Select coordinate system
- 2. Download grid

File format: .gr3 v	
EPSG coordinate system	4326 0


Ownload horizontal mesh

Step 7. Generate vertical mesh

- 1. Define parameters
- 2. Visualize grid
- 3. Download grid

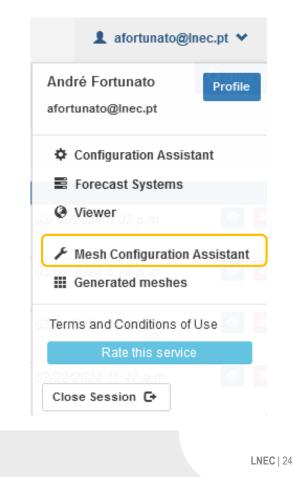
3D Mesh with the following parameters: Vertical levels: 20 Z levels: 1 Z-S transition depth(m): 100 S-sigma transition depth(m): 5 ThetaB: 1 ThetaF: 8 ②Download vgrid.in

Step 8. Summary

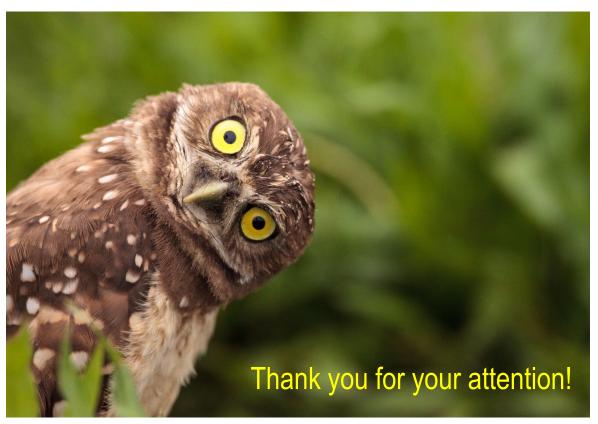
- 1. Verify choices made
- 2. Archive grid

Summary
1 Horizontal domain
2 Mesh resolution
3 Horizontal mesh
4 Bathymetry
5 Boundary
6 Download horizontal mesh
7 Vertical mesh

Accessing OPENMeshS


- 1. Access OPENCoastS (https://opencoasts.ncg.ingrid.pt)
- 2. Login or register

LABORATÓRIO N DE ENGENHARIA


//**IF<**)

3. Click on Mesh Configuration Assistant

Mes	n Configuration	Assistant			O New generation	H Save
Step 1	Step 2	Step 3	Step 4 Step 5	Step 6	Step 7	Step 8
Horizonta domain	I Mesh resolution	Generate horizontal mesh	Interpolate Define bathymetry boundaries	Download horizontal mesh	Generate vertical mesh	Summary
Horizontal	domain					0
This step al	ows defining the horizontal dom	ain.				
Mesh name	(*):		+ IAMERICA	all of	EUROPE	
move on to the	gion of interest (ROI) that you w next step.	ant, in order to		tlantic Deean		ASIA
West Longit			- Start	- Con	AFRICA	
East Longitu	de (*):		SOUTH AMER	ica		
South Latitu	de (*):		12		Indian	Ocean
Draw ROI			OSM V		and the second	
IAL		~	USM V		Street 3	
					Co	mplete step

Questions?

