

A grid generator for OPENCoastS powered by OCSMesh

André B. Fortunato, Ricardo Martins, Anabela Oliveira, Gonçalo Jesus, Marta Rodrigues, Alberto Azevedo, Alphonse Nahon LNEC – Laboratório Nacional de Engenharia Civil, Portugal

Soroosh Mani*, Ed Myers, Saeed Moghimi NOAA – National Oceanographic and Atmospheric Administration, USA * also affiliated with Spatial Front Inc., USA

> 2023 NOAA SCHISM workshop July 19-20, 2023

- Motivation and goals
- The building blocks
 - OCSMesh v. 1.3.4
 - JIGSAW
 - NICEGRID v. 5
- Grid generation with OPENCoastS
- Examples
- Summary and outlook

/NE<

- OPENCoastS empowers users to generate and operate coastal forecast systems powered by SCHISM
- The user is guided through eight steps that let him create his own forecast for any domain

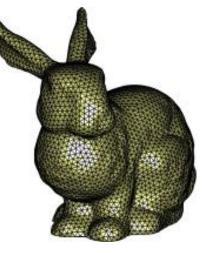
- Current capabilities include 2D and 3D hydrodynamics, waves, and water quality (generic tracer and fecal indicator bacteria)
- OPENCoastS targets both experienced modelers and technicians without previous modeling experience
- For most users, providing a grid of their domain of choice is the major difficulty in adopting OPENCoastS

- Foster the adoption of OPENCoastS by non-experienced modelers by:
 - Providing users with an online grid generator that is simple and intuitive
 - Generating both horizontal and vertical grids for SCHISM
 - Providing easy access to online bathymetric and coastline data
- Users should be able to generate an operational grid in less than 30 minutes

The building blocks

OCSMesh

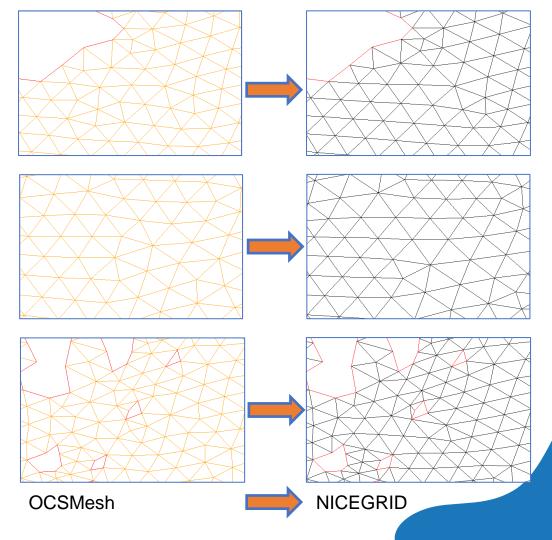
- Mesh preparation tool for generating inputs and cleaning up outputs for the mesh engine (Jigsaw)
- Designed to be user-friendly and interoperable with common Python GIS packages
- Supports multiple methods of defining the domain and sizing function of the mesh
- Supports mesh sizing function manipulation based on predefined shapes or extracted contours from bathymetry
- Originally developed by Jaime R. Calzada (VIMS), currently developed and maintained by Soroosh Mani (NOAA, SFI)



The building blocks

JIGSAW (www.giss.nasa.gov/tools/jigsaw)

- Unstructured mesh generator and tessellation library called by OCSMesh
- Designed to generate high-quality triangulations and polyhedral
 decompositions of general planar, surface and volumetric domains
- Includes refinement-based algorithms for the construction of new meshes, and optimization-driven techniques for the improvement of existing grids
- Developed by Darren Engwirda et al.


The building blocks

NICEGRID

NICEGRID automatically improves grids by reducing element skewness.

Main operations:

- Adding and removing nodes
- Changing connections between nodes
- Adjusting the position of internal nodes, and of nodes along straight boundaries

O Nova geração

H Guardar

Step 1 – Horizontal domain

Define:

- 1. Region of interest
- 2. Bathymetric source(s)
- 3. Landward limits
- 4. Water boundaries

Assistente de geração de malhas							
Passo 1	Passo 2	Passo 3	Passo 4	Passo 5	Passo 6	Passo 7	Passo 8
Domínio Horizontal	Resolução da malha	Gerar malha	Interpolar batimetria	Determinar fronteiras	Download Malha Horizontal	Geração da malha vertical	Resumo
Domínio Horiz	contal						00

Este passo permite definir e obter a informação de base sobre o domínio horizontal.

Step 2 – Grid resolution

Define

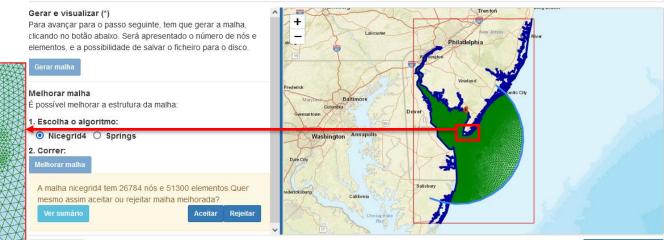
- 1. Max and min resolutions
- 2. Constant resolution between two isobaths
- 3. Constant resolution along an isobath and linear increase away from it
- 4. Constant resolution in polygon and linear increase away from it

Other OCSMesh options are not implemented yet

·									
As	ssistent	e de ge	eração	de malha	S ID:28:27			O Nova geração	H Guard
	sso 1	Passo 2	-	Passo 3	Passo 4	Passo 5	Passo 6	Passo 7	Pas
		0							
	nínio Reso zontal	olução da ma	lha	Gerar malha	Interpolar batimetria	Determinar fronteiras	Download Malha Horizontal	Geração da malha vertical	Resu
Defini	r resolução								6
Neste	passo terá de fo	ornecer a reso	lução da malh	ia.					
- Defina	a a resolução n	náxima e mín	ima global:	^			Tren tor		
Mínimo	Global (m) (*):	100	0		1-1-)	Lancaster	Philadelphia	Rive #	Legenda estimado nó:
Máximo	Global (m) (*):	5000			15		Tington	R R R R R R R R R R R R R R R R R R R	esolução 100 m
	ução constante resolução cons		isobatimétrica		Frederick	Baltimore	Vinstand	unite City	3737 m
	#	Prof. Inferior	Prof. Superior	Resoluçã o	German town	S Area	Dever Delaware Bay		
×	1	-5	10	400	Washington	Annapolis			
Definir					Dale City		A C	1	
	nto linear:	com a distân	ia a uma isob		redericksburg	California	Salisbury		
iaique o	damento incar	Cota	Taxa de	damourod.	An T	Chesapebre	H	34 3	

+ Anterior

Anterior


Concluir passo =

Step 3 – Generate horizontal grid

- 1. Generate the grid with OCSMesh & JIGSAW
- 2. Improve the grid with NICEGRID

Assist	tente de geraçã	io de malhas	ID:28:27			V Nova geração	H Guargar
Passo 1	Passo 2	Passo 3	Passo 4	Passo 5	Passo 6	Passo 7	Passo 8
Domínio Horizontal	Resolução da malha	Gerar malha	Interpolar batimetria	Determinar fronteiras	Download Malha Horizontal	Geração da malha vertical	Resumo
Gerar malha							00

Neste passo o utilizador pode pedir para ser gerada a malha com os parâmetros definidos nos passos anteriores.

Step 4 – Interpolate bathymetry

1. Interpolate the bathymetry from the sources specified in Step 1

Interpolar batimetria

Neste passo o utilizador pode pedir para se fazer a interpolação com o conjunto de fontes batimétricas escolhido no passo 1.

Interpolar batimetria

Clique no botão abaixo. Em caso de sucesso, será apresentada a malha resultante dessa interpolação. Abaixo apresentamos-lhe a lista das fontes batimétricas escolhidas no passo 1.

Step 5 – Determine boundaries

Determine open/closed boundaries by either:

- 1. Selecting pairs of nodes that define open boundaries
- Selecting a threshold depth for land boundaries (OCSMesh)

- Por pares de nós
- O Por threshold

Clique em 'Adicionar Par' e escolha dois nós no sentido direto (counterclockwise), depois clique em determinar. Use a roda do rato para zoom in e zoom out. Pode adicionar vários pares.

	#	Par de Nós	Cor
×	1	8847,26036	#9335B3
×	2	6209,6093	#835355
ta de fre	onteiras:		

Step 6 – Output horizontal grid

- Select file format and the coordinate system
- Download the horizontal grid to your computer

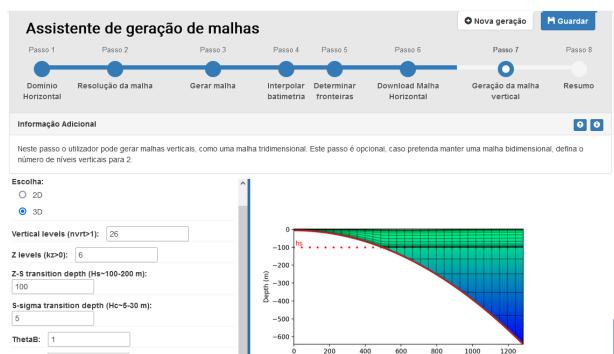
Neste passo o utilizador pode guardar cópias da sua malha para vários formatos e EPSG.

\$

Output da malha horizontal Escolha o formato de ficheiro e tipo de transformação geográfica que pretende guardar.

Formato de ficheiro: .gr3 ~

Transformação geográfica (EPSG): 4326



Step 7 – Generate vertical grid

- Generate a 2D or 3D vertical grid
- Define:

/NE<

- # of vertical levels
- # of Z levels
- hs
- hc
- θ_b
- θ_f
- Visualize the grid
- Download the vertical grid to your computer

Download malha vertical

Horizontal (m)

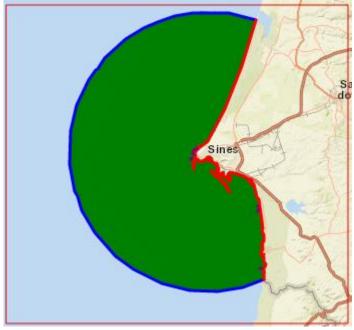
Anterior

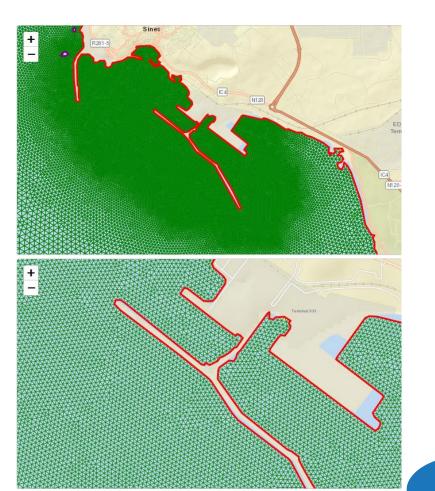
ThetaF: 8

Determinar

Step 8 - Summary

LINE<

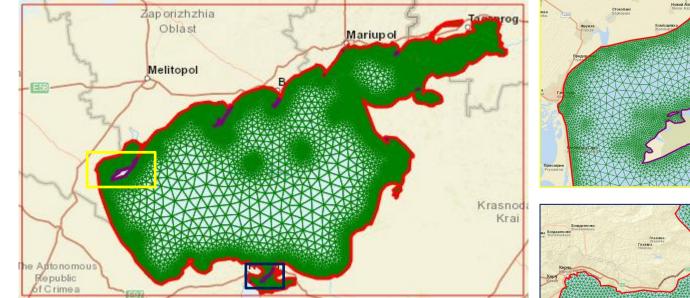

- Review your choices
- Archive the grid in OPENCoastS for future use and change

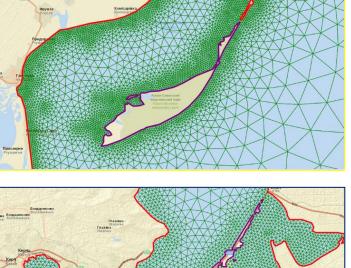

Assisten	ite de geraçã	io de malha	S ID:28:27			O Nova geração	H Guardar
Passo 1	Passo 2	Passo 3	Passo 4	Passo 5	Passo 6	Passo 7	Passo 8
				-0-			- 0
Domínio Re Horizontal	esolução da malha	Gerar malha	Interpolar batimetria	Determinar fronteiras	Download Malha Horizontal	Geração da malha vertical	Resumo
Submeter Malha							00
Confirme as configu	rações selecionadas.						
Sumário		^	+	524	Trentor		
1 Domínio Ho	orizontal		-	Lancaster	Philadelphia	River	
	DelawareBay_clone		Frederick	SER	Vineland	V	
ROI: [-75.64,40.10 -73.99,37.99]	ь,		\sim \sim	Baltimore	141	an Sc City	
Domínio: Definir I	manualmente limites de te Open Street Maps (OSM)	U U	German town	Annapolis	Delaware Bay		
2 Resolução	da malha		Dale City				
3 Malha gera	ıda		rederickiburg		Salisbury		
4 Batimetria			The second	California Chesaporake	1	1	
Contaira		~	h es	and the	21 50		
+ Anterior					🔽 Aceito T	fermos e Condições de Utiliza	ção 📀 Gravar

Examples

Sines harbor

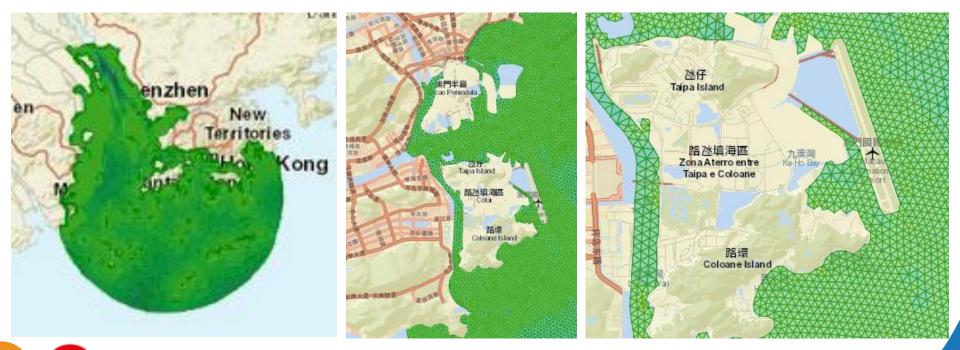
LINE<





Examples Azov Sea

LINE<



LINE<

Pearl River estuary (Macao and Hong Kong)

Summary

- Key features
 - Offers easy and intuitive grid generation
 - Generates both horizontal (triangular) and vertical (S-Z) grids
 - Provides open access data:
 - Topography/bathymetry (gebco, SRTM 1-arcsec, emodnet)
 - Coastline (open street map, emodnet MHW)
 - Grids are smooth, although not necessarily the most eficient
 - Grids can be cloned and changed
- Ongoing and future developments
 - Bug fixes, improvements and robustness
 - English interface
 - Public deployment
 - Include more features from OCSmesh
 - Improve estimate of the number of nodes

Questions? Comments?

Coastal circulation on-demand forecast

