

Generation of triangular finite element grids for coastal models

Marta Rodrigues, André Fortunato - LNEC

www.incd.pt

EOSC-hub receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 777536.

- Concepts and theory
 - What is a finite element grid?
 - Available grid generators
 - The major steps in grid generation
- Building a FE grid with xmgredit and nicegrid
 - Introduction to Xmgredit5 software
 - Example of application

EOSC-hub What is a finite element grid?

- Coastal processes are described by partial differential equations
- Because there are no analytical solutions for those equations, they have to be discretized to be solved numerically
- A FE grid is an approach to discretize a continuous domain
- FE discretizations offer a piece-wise continuous description of the variables, with a varying resolution
- Nodes and elements of the grid determine where equations are solved and how spatial gradients are evaluated

- A finite element grid includes the following information:
 - Location of the nodes
 - Depths at the nodes
 - Definition of the elements
 - (ordered list of nodes that define each element)
 - Definition of the boundaries

Name	Node placement	Triangulation	Optimization	Boundaries	Availability
xmgredit	Yes	Yes	Yes	Yes	Free
SMS	Yes	Yes	Yes	Yes	Commercial
Gmsh	Yes	Yes	Yes	Yes	Free
OceanMesh2D	Yes	Yes	Yes	Yes	Free
JIGSAW	Yes	Yes	Yes	Yes	Free
ADmesh	Yes	Yes	Yes	Yes	Free
triangle	Yes	Yes	No	No	Free
nicegrid	No	No	Yes	No	Free

EOSC-hub Major steps in grid generation

- 1. Domain definition
- 2. Node placement
- 3. Definition of the triangles
- 4. Optimization and verification
- 5. Interpolate the bathymetry
- 6. Boundary definition

- Upstream
 - Should extend beyond tidal intrusion
 - Often limited by the availability of bathymetry
- Downstream:
 - Extend to deep waters, where velocities are small
 - Avoid to place the boundary in areas where with strong velocities
 - Make the boundary geometrically simple
- Example

- Choose node density to resolve:
 - Tidal wave: minimum dimensionless wavelengh > 40-60
 - Tidal channels must be resolved with over 4-6 nodes to guarantee the reproduction of fluxes
 - Sharp bathymetric gradients
 - Solid boundaries must be adequately resolved
 - Sharp velocity gradients (e.g., ebb jet from a tidal inlet)
- Grid resolution should vary smoothly to promote accuracy and stability

EOSC-hub Optimization and verification

• Objectives:

- Reduce skewness
- Smooth transition between elements
- Prevent angles above 90° (some models)
- Typical operations:
 - Add nodes
 - Delete nodes
 - Move nodes
 - Swap edges

Grids that are transformed into the one in the center

			:							:	=	

... and after (optimized with *nicegrid*)

Automatic grid generation

With xmgredit and nicegrid

- FE grid generator developed for coastal modelling
- Semi-automatic grid generator
 - Node placement
 - Triangulation
 - Quality control and grid editing
 - Boundary definition
 - Bathymetry interpolation
- UNIX/LINUX based

- With an existing grid: xmgredit5 hgrid.gr3
- With an existing points file:
 xmgredit5 –b points.bpt –w
- Without any file:
 xmgredit5 –W 0 0 1 1

- The background grid
 - Cannot be edited
 - Usually contains the bathymetry
 - Represented in orange

- The build points
 - Can be added, moved, deleted
 - Represented as black squares

 Triangulation of build points using build / triangulate build points

EOSC-hub Define auxiliar bathymetry (1)

- Xmgredit automatically places build points based on the dimensioneless wavelength
- Generate a fake bathymetry to get the grid spacing that we want:

Depth = $1/g (\alpha s / T)^2$

- where
 - g is gravity(9.8 m/s²)
 - s is the desired grid spacing previously defined
 - α is a dimensionledd wavelength
 - T is a wave period

 Load the auxiliar grid as background grid
 Load coastal boundary as edit boundary

Generate a new set of build points using build / automatic placement

• Use the same values of α and T used previously

EOSC-hub Generate build points (3)

A set of build points is created in the domain that obeys the desired grid spacing

Triangulate build points using build / triangulate

A computational grid is generated, but with some quality problems

• Oprimizing the grid with xmgredit is very time consuming. nicegrid is command line code that does that automatically

Load the background grid using File / read / background grid

Interpolate the bathymetry using gridDEM / load bathymetry

Thank you for your attention!

Questions?

EOSC-hub

� eosc-hub.eu ♥ @EOSC_eu

This material by Parties of the EOSC-hub Consortium is licensed under a Creative Commons Attribution 4.0 International License.

- xmgredit5 and nicegrid2 are available through the SCHISM platform:
- Download SCHISM (including xmgredit5):

http://ccrm.vims.edu/schismweb/schism_manual.html

System Strength St

http://ccrm.vims.edu/schismweb/ACE/gredit/index.html

Incegrid2 code (fortran source code)
http://ccrm.vims.edu/w/index.php/Share_your_tools

EOSC-hub Poorly resolved marina

• Delaunay triangles: no node is inside the circumcircle of any triangle

Triangles that do <u>not</u> meet the Delaunay criterion

Triangles that meet the Delaunay criterion

Figures from wikipedia

